
Journal of Statistical Physics, l/oL 29, No. 4, 1982 

Clustering in Low-Dimensional SO (N)-Invariant 
Statistical Models with Long-Range Interactions 

K. R. Ito 1 

Received May 25, 1982 

We obtain upper bounds for the two-point correlation functions in statistical 
models in one or two dimensions which have SO(N) symmetry. This clarifies 
upper bounds for long range interactions for which there exists clustering. 

KEY WORDS: Clustering; long-range potential; lattice Green's function; 
reflection positivity. 

1. INTRODUCTION AND MAIN THEOREMS 

There has been some interest in statistical models in low dimensions which 
have long-range interactions. (1-3) In this paper we discuss (translationally 
invariant) statistical models which have SO(N)-invariant two-body interac- 
tions. As is quite well known, (~~ there exists no spontaneous magnetization 
in these models if the dimension is less than or equal to 2. This is not the 
case for long-range interactions or for long-range potentials. 

This kind of model typically has the following Hamiltonian: 

Un(s ) = ~ j ( x  - y)sxsy (1) 
(x,y)EA| 

where s x ~ S N- 1 (N > 2), A a bounded (rectangular) region in Z ~, {j(n) 
= j ( -  n) ~ R; n ~ Z ~ } is the potential, and a pair (x, y) is taken only once 
in the sum. Furthermore, we assume 

�89 ~ { j ( n ) i =  1, j(0) = 0 
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The corresponding Gibbs measure d#A is given by 

1 exp[ flHA(s) l I I  dsx (2) 
ZA x 

where Z A is the normalization constant chosen so that f d/t A = 1. 
We also discuss quantum models. However, in this paper we restrict 

ourselves to the Heisenberg model without loss of generality, where we 
replace s x by o x = (o~,a2,O3x) and / ( - )d~a by Tr[(.)expflHA]/Z A, respec- 
tively. Here (a~)* = ax' E Mat((2S + 1) • (2S + 1)), and 

3 

E < , < ]  = k ,eijkOx , ~] (o~) = S ( S  + 1) (3) 
i = 1  

For given {j(n) = j ( -  n); n E Z"}, we consider a positive potential 
{J(n) = J ( - n )  > O; n ~ Z ~} such that 

Ij(n)l < J(n),  J(O) = O, 2 S ( n )  < oo (4) 

We define a generalized lattice Laplacian M by 

Let 

( -  aJ)(x, y) = 
~ J ( n ) ,  x = y  
n 

- J ( n ) ,  x = y + n 

0, otherwise 

(5) 

cosk ,l ' 

be the Fourier transform of the Green's function ( -  M)-  l(x, 0), where 
k ~ [ -  ~r, ~r) ~ and we have used J(n) T J ( -  n). Obviously C(k ) -  1 ) O. 
Since ~] J(n) < oo has been assumed, C(k)-1 is continuous and C(k) - l  
--->0 as [k]-->0. Since (AJ) -I  may not be defined for v = 1 or 2, we define a 
lattice Green's function C o by 

= f d (eikx __ 1)d(k) (7) Co(x) 

Then Co(X)< Co(0)= 0. Let us assume that C(k) is not integrable in a 
neighborhood of k = 0. Then 

lim Co(x) = - oo (8) 
Ixl-~ 

and what we claim is that there exists clustering whenever C(k) is not 
integrable in a neighborhood of k = 0. 
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We may assume that (J(n)} satisfies 

(A) i, = 1: {J(n)} is such that Co(x ) = C0([xl) is monotone decreas- 
ing and convex in I xl. 

p = 2: {J(n)} is such that Co(x ) is (approximately) rotationally 
invariant, and monotone decreasing and convex in Ix[ 
= (x  2 + x~) 1/2. Namely, Co(x ) = C(Ixl) + O(1), C(Ixl) 
= monotone decreasing and convex. 

For (A) to hold, the following (A') is sufficient (see Appendix): 

(A') p = 1: {J(n) = J ( -  n)/> 0} is reflection positive (RP). (3) 
p = 2: {J(n) = J ( -  n)/> 0} is (approximately) rotationally in- 

variant and reflection positive for the x 1 direction. Fur- 
thermore: (1)J(n)<<. cl]n1-3-~', ( 2 ) I J ( m ) - J ( n ) l  <. 
c2[n[ -4- '2  for I lml - Inll < 1, and (3) J (n )  = J(([nll, 
In2l)--J(In21,1nl[)) for any n = ( n l , n 2 ) ~  Z 2, where c i 
and c i are positive constants. 

There are sufficiently many J(n) 's  which satisfy (A) or (A'). For  
example, the following are RP (for p = 1, 2 . . . .  ): 

(i) J (n )  = constn -" ,  a > O, 
% (ii) J (n )  = cons t (1 /n~) log~n  �9 �9 �9 logan, a > 0, 

where n = Inl and logan = log- �9 �9 logn (s times). See Appendix or Refs. 3, 
6, 7 for the details. 

These assumptions may be used in the classical or quantum S O ( N ) -  
invariant models, but are not necessary at all in the case of the Villain 
model, which is a variation of the X Y  model and has the U(1) symmetry. 
And moreover we can obtain an almost optimal upper bound for this 
model. Then it is quite meaningful to consider the Villain model, even 
though this is defined only for positive potentials. Let 

~'BJ(,O(O) = 2 exp - J(n) (O + 2hr) 2 (9) 

This is almost equal to const exp[ f lJ(n)cos 0] for large f lJ(n).  We define the 
Gibbs measure of the Villain model by 

_ dO~ (10) 1 I I  - I I  
Z (x,y) 

where {J(n)} has been used instead of ( j ( n ) )  since the potential must be 
positive in this model. 
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Theorem 1. In the Villain model, 

(SoS~) = (cos(Oo- O~ )) <<. exp[ -~ Co(~) l ( l l )  

for any potential {J(n)}. 

Theorem 2. Assume that there exists a positive potential (J(n)} 
which satisfies inequality (4) and condition (A) or (A'). Then for both 
classical and quantum models, 

I(s0s~)l < const[ - Co(~)]-Y, y < 1 (12) 

Remarks 1. (1) Our upper bounds are optimal in the sense that they 
cluster whenever C(k) is not integrable in a neighborhood of k = 0. If C(k) 
is integrable, there exists spontaneous magnetization for large fl (if the 
potentials are RP (3)). 

(2) Our upper bound (12) is not optimal because it is known (2'6-8) that 
for p -- 1 the two-point correlation functions satisfy L 1 clustering provided 
that ~,[nj(n)] < oo. On the other hand (11) satisfies this requirement as is 
proved in Lemma A.4. Then we conjecture that (12) may be improved in 
the form of inequality (11). See Remark 2. 

(3) Let p--  1 for simplicity and let | be the reflection operator with 
respect to x = 1/2 (see Ref. 3). Then 

~V~(O o - 01) = K 1 + 2~,exp(-n2/2f l )cosn(Oo-  01) 
1 

= K  l + 2 ~ e x p ( - n 2 / 2 f l )  
1 

X [ cos n00tg(cos nOo) + (cos --> sin) ] } 

where K > 0. Then the Gibbs measure of the Villain model with nearest- 
neighbor interaction is RP. For long-range potentials, it seems to be an 
open problem when the Gibbs measure is RP. 

2. PROOF OF THEOREMS 

Our proof is an extension of the method employed by McBryan and 
Spencer (9) in order to obtain upper bounds for the two-point correlation 
functions in the XY models (with short-range interactions). This method 
may be called an estimate of integrals by means of complex translations. 
Even though their method is very powerful for short-range potentials, some 
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tricks are necessary when long-range potentials appear. This is not the case 
for the Villain model. 

Proof of  Theorem 1. We first introduce a periodic box A = [ - N ,  
N)" N Z" and define the Gibbs measure dffA: 

dOx 
__1 1~ ~ H ( y - x ) ( 0 ~ - 0 y ) ~  x 2~ 
Z A  x , y ~ A  

where the long-range potential {J (n )= J ( - n ) >  0} is changed into a 
A A A 

periodic potential { J(n) = J ( -  n) > 0} : J(m) = J(n) if m i = n i E [--  N, N)  
rood 2N, and furthermore 0 x = 0 x, if x i = x: mod 2N. 

Let a ( x ) E  R, and we change the contour 0--->2~r of dO x as 0--> ia(x) 
~2~r + ia(x)-->2~r, q:/~ (0) is holomorphic in 0 and %/~ (0 + 2mr)= ~V/~ (0) 
for any 0 ~ C. Then this change of the contour is equivalent to 0 x ---> 0 x + 
ia(x), 0 x ~ [0,2~r). Now 

[~V~(O + ia)l < ~B(O)exp( ~ a  2) (13) 

Then by using the definition of Z A, we have 

(exp[i(0 o -  0~)]> < e x p ( - [ a ( 0 ) -  a(~)]  

A 3:(n) } 
+ ~2 2 [ a ( x ) -  a(x + n)] 2 

x~n 

=exp{-[a(0)-a(~')] +~--(a,(--AY)a)} (14) 
where A y is the generalized lattice Laplacian defined by Eq. (4). (J is 
replaced by J and periodic boundary conditions are imposed.) Replace 
( - M )  by the strictly positive ( - A )  + M 2) > ( -  A)), where M 2 > 0. Set 

Then we have 

a(x)=~[(--AY +M')-'f](x) 
f ( . )  = 8 . , o -  8.,, 

1 _A2 -lf)] ( ) < e x p [ - ~ ( f , (  + M  2) 

(15) 

Let M ~ 0 after taking the thermodynamic limit N--> m. Then 

><exp[ 1 /1 �9 (16) 
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Proof of  Theorem 2 (Classical Spin Cases). As in Ref. 9, it 
suffices to consider the X Y  model  case (N  = 2), where the Hamil tonian  is 
given by  

H = • j ( y  - x)cos(O x - Oy) 
x , y  

N o w  cos(0 + ia) = cos0  - is inOsinha + c o s 0 [ c o s h a  - 11. T h e n  using 
[exp fljcos(O + ia)[ < exp[ fijcosO + f l [ j l ( cosha-  1)] and the definit ion of 
Z, we can start with 

[ (exp[ i (O o -  0~)])[ < e x p ( - [ a ( 0 ) -  a ( f ) ]  

+ fi~J(n)[cosh(a(X)x,n - a (x  + n)) - 1] )  

(17) 
Set K = 21C0(f)l, and without loss of generality we consider the case such 
that  K ~  oe as I '1 o~. In fact if K is bounded  uniformly in ~, our  upper  
bound  is trivial. Then  we can also assume K >/ 1 without loss of generality. 
Note  that  

M(~')  ~ M(~'; J )  

= sup ICo(x) - Co(x - ~) - Co(x + n) + Co(x + n - ~)[ 
x E Z * , n  ~ supp  J 

< 2 sup ICo(x) - Co(x - ~')l (18) 
x ~ Z  ~ 

By easy geometrical  considerations using assumption (A), 

{] C0(~)], v - -  1 
sup I C 0 ( x ) -  C o ( x -  ~')[ = (19) 

~ z ~  ICo( ')l + 0 (1 ) ,  v = 2 

Namely,  the max imum of [C0(x) - Co(x - f)[ is at tained by x = 0 or by 
x = f.  We choose a(x) as 

log K 
a ( x ) -  a_fl K [C~176 (20) 

Then  

la (x)  - a(x  + n)[ < (1  + 8)  ~ l o g K  = A  (21) 

where 8 = 0 for v = 1 and 8 = O ( K  -1) for v = 2. By using the monotone  
increase of (coshx  - 1 ) / x  2, we have 

c o s h [ a ( x )  - a(x  + n)]  - 1 < (1 + r -2eA1 [ a ( x )  -- a(x  + n)]  2 
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where e < 1 and e---> 0 as A -~ oo. Then we have 

E f l J (n){cosh[a(x)  - a(x + n)] - 1} 
x~n 

1 + e -2ea 
< - T -  Ba (a, ( -  

- l + e ~ A - 2 e A ( a l ~  2 K 2  flK 

= f l  (1 + e)(1 + 8 ) -2K -'+(~/B)(l+a) (22) 

which is bounded uniformly in K > 1 provided ~, - a/ f l  < 1. [8 = 0 for 
v = l  a n d S = O ( K - l )  f o r v = 2 . ]  

Finally 

- [a (O)-a( f ) ] - '2aB l~176 l~176 (23) 
So it suffices to choose "y = a/ f i  < 1. [] 

Remark 2. If suppJ  is bounded, M(~; J )  is bounded uniformly in f. 
This is easily seen by showing that ICe(x) - Co(x + n)l is bounded uni- 
formly in x if Inl -< const. In this case a(x) = [C0(x ) - Co(x - ~)]/fl is the 
best choice as in the case of the Villain model. (9) 

Proof of Theorem 2 (Quantum Model Cases). We restrict our- 
selves to the quantum Heisenberg model of spin S defined by Eq. (3): 

3 

( f>  = Z - ' T r f e  13", f =  aoar = ~,, 0ooli , (24) 
i = l  

Consider the following transformation: 

a 2 --> 82 = cosOxalx + sinOxo2x 

Ox2~ ax 2 = -s in0xOx 1 + cos0~Ox 2 (25) 

Since this is implemented by a unitary operator on C (2S+ 01al, the expecta- 
tion value is left invariant by this transformation. Obviously 

Z ( 0 )  = T r e  e/~ 

is independent of {0x; x e A}, where H = H(a). Le t f= f (a ) .  Then 

( / >  = Y~ T ~  TrfeB'q= ~ Z - '  II  Wr ge eu 
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where 
2 

g E i i = 0 0 0  ~ , 
1 

= g ( 8 )  = ei(~176176 + e - i (~176176  

= _ O00 ~ ) g+_ -~ a~a~ + i a~a~-  2 i 

Let Ox--)O x -+- ia(x)  (+  for ~+ ,  - for ~_) .  Then 

)I 2 
" i i H--->~j(n cos(O~ - Ox+. )~Oxax+ . 

x , n  [ 1 

_261 1 Ox x+nJ -s in(0x - 0x+n)[a~~ - ~ x+n] + 3~ ] 

+ E j ( n ) { c o s h [ a ( x )  - a ( x  + n ) ]  - 1} 
x,n 

{ 2 J } 0 i i _ O x O x + n  1 X cos(Ox_ ~+.)~.OxO~+ _ s i n ( O x _ O x + . ) [ a x O ~ + .  1 2 2 1 
1 

+_ i E j ( n ) s i n h [  a ( x  ) - a ( x  + n) l 
X,n 

2 

X - s i n ( O ~ -  0~+.)~-~, i i 
1 

= I 4 + S H + _  i l l '  

q 
+ os(0x- ,2  )] Ox +n ) ( O x f f x + n  - -  OxOx + n 

(26) 

in this order, whe re /1  = H(8), 8H and H '  are self-adjoint operators and 
each pair (x, x + n) is taken only once in the sum. Then 

A 

Ilexp( f i n  +/36H +__ i/3H')ll, 

= mlirnoo I1 [exp( f l / t /m)exp(  f l 6 H / m ) e x p (  + i f lH' lm)] 'n i l  ' 
A 

< Ilexp flHlllexp[ BII6HI[~] = Zexp[ /3[[~Oll~]  

Thus using I j(n)[(cosha - 1) < J (n ) (cosha  - 1) as before, we have 

[<f>l <a~(ll~+ II~ + 112-H~)exp{ - [a(0)  - a (~) ]  + f l K ~ , J ( n )  
x,n 

•  + n ) ) -  1]} (27) 
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where each pair (x, x + n) is taken only once and (since n 4: 0) 

2 
_ i i 1 2 

g Y, +ll x  +n 2 , - a~o~+n - a~a~§ < constS 2 
I 

Thus the problem has been reduced to the classical X Y  model. [] 

Remark  3. In Ref. 4, Fr6hlich and Pfister remarked that the 
McBryan-Spencer method can be extended to quantum models, but they 
gave no proof. 

3. REMAINING PROBLEMS AND DISCUSSION 

Even though the bounds in Theorems 1 and 2 are optimal in the sense 
that there exists spontaneous magnetization for large fl whenever the upper 
bounds do not decay, the decay rate in Theorem 2 may not be optimal. 
This is because we could not control cosh[a(x) - a(x  + n)] in an optimal 
way which can increase rather rapidly as whenever suppJ  is 
unbounded. As a result the upper bound in Theorem 2 fails to satisfy 
Ll-clustering for p = 1 even if ~]n] [J(n)[ < oo. On the other hand the 
upper bound for the Villain model satisfies this requirement, and then we 
conjecture that the optimal upper bound may be given as exp[const C0(f ) 
/ f l ]  for any model. In fact in the one-dimensional Villain model with 
nearest-neighbor interaction, this upper bound gives the precise correlation 
functions. (s) (In fact it is easy to see that the correlation functions are given 
by the Gaussian integral in this case. Then the McBryan-Spencer method 
=approximation method by Gaussian integral (9) is precise in this case.) 

After almost finishing this work, the author became aware of Ref. 7, 
where a similar upper bound is obtained for models which satisfy the 
Bogolyubov inequality. In Ref. 7 RP is not essential and not assumed, and 
on the other hand in our work the upper bound is improved. (7 = 1//2 in 
Ref. 7.) In this work reflection positivity is used to obtain maxlC0(x) -  
Co(x - ~)1 = I C0(~)l. But]Co(x) - Co(x - ~')l tends to zero as Ixl-  ~ (the 
Riemann-Lebesgue lemma) for any potential. Then reflection positivity 
may be removed from our assumptions. ]If reflection positivity is not 
assumed, Co(x) can change rather violently especially for small [x I. But this 
will be controllable since we are interested in large Ixl and ]J(n)[ must tend 
to zero as Inl--~ co.] 

The author hopes that these problems will be solved in a future 
publication. 

Remark  4. The conjectured upper bound exp[constCo(~)//fl] may 
hold only for large ft. In fact this means a faster decay for small/3, and on 
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the other hand the decay seems to be slower than that of the long-range 
potential. 

A P P E N D I X  

L e m m a A . 1 .  L e t ( J ( n ) > 0 ; n ~ Z  ~ } b e R P ( v = l , 2  . . . .  ) f o r t h e x  1 
direction. Let x = (x l, 0 . . . .  ,0),  x I = 1, 2 . . . . .  Then Co(x ) is monotone 
decreasing and convex in Ixl = Ixll (5 a 0). 

Proof. Introducing an artificial mass M > 0, we consider 

CM(X ) = ( m  2 - M)-1(x,O) 

= (q(O)q(x)) 

- l f q(O)q(x)exp[- l (q ' (MZ-  SS)q)] (A.1) 

where q(y)~ R for all y E ZL Since J is RP, there exists a positive 
measure dp(/0 (defined through the transfer matrix 0))  such that 

(q(O)q(x)) = f0~exp[  -/~lxl ] do (tz) (A.2) 

where exp[- / t [xl]  is monotone decreasing and convex in Ix[. Then so is 
CM(X ) and so is Co(x ), too. �9 

Since the reflection positivity itself is not necessary in our theorems, it 
may be interesting to know to what extent our assumptions can be 
weakened. 

Le mm a  A.2. Let (J(n)>1 0; n E Z ~, n @ 0) depend only on (in1[, 
�9 . . ,  ]n~l), and let J(n) be monotone decreasing in In, I. Then Co(x ) = 

c0( ( Ix l l  . . . . .  Ix=l)) is monotone decreasing in Ixi[. 

Proof, 
J(n) = J( -n) ,  we consider 

( M 2 -  Aj)_I = (M 2 + E J(n) _ EJ(n)~n )-1 
n n 

or equivalently 

1 - ~ - i  , ~nJ(n)(~.) (x ,O)=(~xo+  ~ +(N)(x) 
N = l  

Let ~ ( x ,  y) -- 1 f o r y  = x + n and 0 otherwise. Noticing that 

(A.3) 
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where 

and 

:( ' ) (x)  = : ( x )  

~ ( : ' ) ( x )  = ~ ] J ( n ) ~ ( : ' - m ) ( x  - n)  
n 

J(,,) 
J ( n )  = M2 + J(O) + Em~oJ(m)  ' n @ Z ~ 

Then  ~ J ( n ) <  1 and J (0)  is some positive number  bigger than J(n), 
In I = 1. [J(0) can be chosen arbitrarily since 60 = 1.] In the case v = 1, 

qs(2V)(x)- ~p(N)(x + 1 ) =  k [ a ~ ( " ) - a ~ (  n +  1)] 
n = l  

x [ q / : " ' ) ( x  - n)  - ~ ( ~ - ' ) ( : ,  + ~ - l ) ]  

+ [,1(0) -- d~(1)][t~(N-1)(X)--~'(N-')(X + 1)] 

(A.4) 

Since tp(N)( - x) = ~(N)(x) for  all N, we see that (tp<U)(x)) are mono tone  
decreasing in Ix I :# 0 by induct ion with respect to N. The  discussion is 
similar for  v > 2. B 

But the convexity may  not  follow in this way. If v = l, any RP 
potential  ( J ( n ) =  J ( - n ) ;  n > 1} is given (3) by  

K6n, t +s176176  (A.5) 

where K, p+ > 0. Then  if p_ = 0, this is also mono tone  decreasing and 
convex in Inl. By setting p_ = 0, p+ - - - - / ~ - l l o g ~ ' # . . .  log~/~ we find that  

J(n)  ~ n-~log~'n . . .  logan (a  > 0: s = 1 , 2 , . . .  ) 

is RP. This is also RP for v = 2, 3 . . . .  
For  v < 2, J(n) ~- n-2~ is critical. In this case 

C ( k )  ~ Ik--~ ' v = 1, 

-~2 [ logk]- l ,  v = 2 

then - C 0 ( ~ ) ~ m  as I~[--->oo. This is also the case for J(n)-~ n -2~ 
logn . . .  log,n (see Refs. 3, 7). 
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Lemma A.3 .  Let v = 2  and let 
(A'). Then (A) holds. 

Proof. 

(J(n) >1 O; n E Z 2, n v s O} satisfy 

C ( k ) - l =  ~Y(n)2 sin 2 kn 
n " 2 

F (kn) 2 ] 
= E [S(n)--g- +J(~)o((~.?) 

Inl < Ikl -~ [ 

+ __ nl I l-d "J lnbZsin -  + R(k) 

where J( ln[)  = J ( ( ln[ ,0) )  for In I E Z and  J( ln[  + s) = (1 - s)J(In[) + 
sJ(ln[ + 1) for Inl ~ z and s E [0, 1]. 0 < 8 < 1 is chosen so that 

J(n)lnl4lkl 4 < coast  Ikl 2+~' 
Inl < Ikl -n 

with 8 i > 0. Since J(n) < cons t ln1-3- ' ' ,  8 = 1 /3  is sufficient. The remain- 
ing term R(k) is bounded  by  

const ~ [ sup J(n)s inE~--J (n+l )s in2nk+kl I ]  
Inl/> Ikl -n k / el0,1] z 2 

< coast  ~ [ s u p l J ( n  ) - J(n + l)[n2k 2 + J(n)lnlk 2] 
in I>/[ki-aL l J 

.< const ~ (1~1 -~- ' '  + I , , I -~- 'gk~< constlkl ~+~ 
I-I > Ikl -a 

for some 8 2 . Let 

(kn) 2 
F(k) = ~ J(n) T + ( dZnJ(inl)2sin 2 kn 

Inl < [kl -~ Jlnl > Ikl ~ 2 

Then this is a rotationally invariant function of k = (kl,k2). In fact  
nln2klk 2 in (nk) 2 vanishes  b y  s y m m e t r y  (nl, n2)--~(nl,-n2). N o w  
C(k)-I(k) >1 ck 2, c > 0 for [k[ < e. {Since J is RP  for the two directions, 
this is the case for all k @ [ -~ ,~ r )  2. This follows from J( (1 ,0))  = J((0,  1)) 

0 which also follows from the expression in Ref. 3. See for example (A.5) 
which shows this fact for v = 1.) Then 

C(k)= ( F ( k ) [ 1  + O([klS~)] } - '  

= [ 1 + O( ,k ,~ ) ]  [ F ~ k )  + 1 ] 
1 + O(Ikl~9 
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where 3 3 > 0, [k[ < �9 and F(k) < O([k[ 83) has been assumed without loss of 
generality. Since F(k) >1 constk 2 for [k[ < �9 O(]k[e3)F(k) -l is integrable 
since v = 2. Then A holds since C(k ) -  1 = 0 only for k = 0 if k E [ - 7r, ~r] 2. 

[] 

Lemma A.4 .  Let v = 1 and let ~,~nJ(n) < oe [J(n)/> 0]. Then L 1 
clustering holds for the Villain model: 

E ](s0sx}[ < oo (A.6) 
x 

Proof. 

C ( k ) - ' =  E J(n)2  sin 2 - ~  

<[ ElnlJ(n) sin-~ ][kl 

= ~,, + ~ IlnlJ(n) sin-~-]kl 
Inl<lk[-I/2 [nl>lkl-l/=/ r 

< fconst [k[ 1/2+ ~ [nJ(n)'l[k' 
Inl > Ikl-~/2 

= g(Ikl)lk[ 
where g(lk[~0 as [kl$0. Now 

f,__r eikx_l -f0 '~4sin2-~- Ik~ = ,~ ~ dk= xk d k _  _cons t log lx  I 

Then Co(x ) < - D(x)log Ixl, where D(x)---> oe monotonically as Ix[---> oe. 
This means 

exp[(1/fl)Co(x)] < const(1 + Ixl) 

for a n y a >  1. [] 
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